Robotic load balancing for mobility-on-demand systems

Author:

Pavone Marco1,Smith Stephen L2,Frazzoli Emilio3,Rus Daniela4

Affiliation:

1. Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA

2. Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada

3. Laboratory for Information and Decision Systems, Aeronautics and Astronautics Department, Massachusetts Institute of Technology, Cambridge, MA, USA

4. Computer Science and Artificial Intelligence Laboratory, Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

In this paper we develop methods for maximizing the throughput of a mobility-on-demand urban transportation system. We consider a finite group of shared vehicles, located at a set of stations. Users arrive at the stations, pickup vehicles, and drive (or are driven) to their destination station where they drop-off the vehicle. When some origins and destinations are more popular than others, the system will inevitably become out of balance: vehicles will build up at some stations, and become depleted at others. We propose a robotic solution to this rebalancing problem that involves empty robotic vehicles autonomously driving between stations. Specifically, we utilize a fluid model for the customers and vehicles in the system. Then, we develop a rebalancing policy that lets every station reach an equilibrium in which there are excess vehicles and no waiting customers and that minimizes the number of robotic vehicles performing rebalancing trips. We show that the optimal rebalancing policy can be found as the solution to a linear program. We use this solution to develop a real-time rebalancing policy which can operate in highly variable environments. Finally, we verify policy performance in a simulated mobility-on-demand environment and in hardware experiments.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3