Topology-based representations for motion planning and generalization in dynamic environments with interactions

Author:

Ivan Vladimir1,Zarubin Dmitry2,Toussaint Marc2,Komura Taku1,Vijayakumar Sethu1

Affiliation:

1. School of Informatics, University of Edinburgh, UK

2. Department of Computer Science, FU Berlin, Germany

Abstract

Motion can be described in several alternative representations, including joint configuration or end-effector spaces, but also more complex topology-based representations that imply a change of Voronoi bias, metric or topology of the motion space. Certain types of robot interaction problems, e.g. wrapping around an object, can suitably be described by so-called writhe and interaction mesh representations. However, considering motion synthesis solely in a topology-based space is insufficient since it does not account for additional tasks and constraints in other representations. In this paper, we propose methods to combine and exploit different representations for synthesis and generalization of motion in dynamic environments. Our motion synthesis approach is formulated in the framework of optimal control as an approximate inference problem. This allows for consistent combination of multiple representations (e.g. across task, end-effector and joint space). Motion generalization to novel situations and kinematics is similarly performed by projecting motion from topology-based to joint configuration space. We demonstrate the benefit of our methods on problems where direct path finding in joint configuration space is extremely hard whereas local optimal control exploiting a representation with different topology can efficiently find optimal trajectories. In real-world demonstrations, we highlight the benefits of using topology-based representations for online motion generalization in dynamic environments.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multilevel motion planning: A fiber bundle formulation;The International Journal of Robotics Research;2023-11-09

2. A Representation of Cloth States based on a Derivative of the Gauss Linking Integral;Applied Mathematics and Computation;2023-11

3. TMG: A topology-based motion generalization method with spatial relationship preservation;Robotics and Autonomous Systems;2023-08

4. Topology-Based MPC for Automatic Footstep Placement and Contact Surface Selection;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

5. A Virtual Reality Framework For Fast Dataset Creation Applied to Cloth Manipulation with Automatic Semantic Labelling;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3