Experience-based navigation for long-term localisation

Author:

Churchill Winston1,Newman Paul1

Affiliation:

1. Oxford University Mobile Robotics Group, Oxford, UK

Abstract

This paper is about long-term navigation in environments whose appearance changes over time, suddenly or gradually. We describe, implement and validate an approach which allows us to incrementally learn a model whose complexity varies naturally in accordance with variation of scene appearance. It allows us to leverage the state of the art in pose estimation to build over many runs, a world model of sufficient richness to allow simple localisation despite a large variation in conditions. As our robot repeatedly traverses its workspace, it accumulates distinct visual experiences that in concert, implicitly represent the scene variation: each experience captures a visual mode. When operating in a previously visited area, we continually try to localise in these previous experiences while simultaneously running an independent vision-based pose estimation system. Failure to localise in a sufficient number of prior experiences indicates an insufficient model of the workspace and instigates the laying down of the live image sequence as a new distinct experience. In this way, over time we can capture the typical time-varying appearance of an environment and the number of experiences required tends to a constant. Although we focus on vision as a primary sensor throughout, the ideas we present here are equally applicable to other sensor modalities. We demonstrate our approach working on a road vehicle operating over a 3-month period at different times of day, in different weather and lighting conditions. We present extensive results analysing different aspects of the system and approach, in total processing over 136,000 frames captured from 37 km of driving.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Terrain-based Place Recognition for Quadruped Robots with Limited Field-of-view LiDAR;2024 21st International Conference on Ubiquitous Robots (UR);2024-06-24

2. Appearance-invariant Visual Localization for Long-term Navigation;2024 10th International Conference on Electrical Engineering, Control and Robotics (EECR);2024-03-29

3. Assessing domain gap for continual domain adaptation in object detection;Computer Vision and Image Understanding;2024-01

4. BioSLAM: A Bioinspired Lifelong Memory System for General Place Recognition;IEEE Transactions on Robotics;2023-12

5. What to Learn: Features, Image Transformations, or Both?;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3