Registration with a small number of sparse measurements

Author:

Arun Srivatsan Rangaprasad1ORCID,Zevallos Nicolas1,Vagdargi Prasad1,Choset Howie1

Affiliation:

1. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

This work introduces a method for performing robust registration given the geometric model of an object and a small number (less than 20) of sparse point and surface normal measurements of the object’s surface. Such a method is of critical importance in applications such as probing-based surgical registration, contact-based localization, manipulating objects devoid of visual features, etc. Our approach for sparse point and normal registration (SPNR) is iterative in nature. In each iteration, the current best pose estimate is perturbed to generate several candidate poses. Among the generated poses, one pose is selected as the best, by evaluating an inexpensive cost function. This pose is used as the initial condition to estimate the locally optimum registration. This process is repeated until the registration estimate converges within a tolerance bound. Two variants are developed: deterministic (dSPNR) and probabilistic (pSPNR). The dSPNR is faster than pSPNR in converging to the local optimum, but the pSPNR requires fewer parameters to be tuned. The pSPNR also provides pose-uncertainty information in addition to the registration estimate. Both approaches were evaluated in simulation using various standard datasets and then compared with results obtained using state-of-the-art methods. Upon comparison with other methods, both dSPNR and pSPNR were found to be robust to initial pose errors as well as noise in measurements. The effectiveness of the approaches are also demonstrated with robot experiments for the application of probing-based registration.

Funder

National robotics initiative

carnegie mellon university

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3