Underwater navigation based on passive electric sense: New perspectives for underwater docking

Author:

Boyer Frederic1,Lebastard Vincent1,Chevallereau Christine1,Mintchev Stefano2,Stefanini Cesare2

Affiliation:

1. IRCCyN, Ecole des Mines de Nantes, Nantes, France

2. Scuola Superiore Sant’Anna (SSSA), Pontedera, Italy

Abstract

In underwater robotics, several homing and docking techniques are currently being investigated. They aim to facilitate the recovery of underwater vehicles, as well as their connection to underwater stations for battery charging and data exchange. Developing reliable underwater docking strategies is a critical issue especially in murky water and/or in confined and cluttered environments. Commonly used underwater sensors such as sonar and camera can fail under these conditions. We show how a bio-inspired sensor could be used to help guide an underwater robot during a docking phase. The sensor is inspired by the passive electro-location ability of electric fish. Exploiting the electric interactions and the morphology of the vehicle, a sensor-based reactive control law is proposed. It allows the guidance of the robot toward the docking station by following an exogenous electric field generated by a set of electrodes fixed to the environment. This is achieved while avoiding insulating perturbative objects. This control strategy is theoretically analysed and validated with experiments carried out on a setup dedicated to the study of electric sense. Though promising, these results are but a first step towards the implementation of an approach to docking in more realistic conditions, such as in turbid salt water or in the presence of conductive perturbative objects.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3