Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields

Author:

Chebrolu Nived1,Lottes Philipp1,Schaefer Alexander2,Winterhalter Wera2,Burgard Wolfram2,Stachniss Cyrill1

Affiliation:

1. University of Bonn, Bonn, Germany

2. University of Freiburg, Freiburg im Breisgau, Germany

Abstract

There is an increasing interest in agricultural robotics and precision farming. In such domains, relevant datasets are often hard to obtain, as dedicated fields need to be maintained and the timing of the data collection is critical. In this paper, we present a large-scale agricultural robot dataset for plant classification as well as localization and mapping that covers the relevant growth stages of plants for robotic intervention and weed control. We used a readily available agricultural field robot to record the dataset on a sugar beet farm near Bonn in Germany over a period of three months in the spring of 2016. On average, we recorded data three times per week, starting at the emergence of the plants and stopping at the state when the field was no longer accessible to the machinery without damaging the crops. The robot carried a four-channel multi-spectral camera and an RGB-D sensor to capture detailed information about the plantation. Multiple lidar and global positioning system sensors as well as wheel encoders provided measurements relevant to localization, navigation, and mapping. All sensors had been calibrated before the data acquisition campaign. In addition to the data recorded by the robot, we provide lidar data of the field recorded using a terrestrial laser scanner. We believe this dataset will help researchers to develop autonomous systems operating in agricultural field environments. The dataset can be downloaded from http://www.ipb.uni-bonn.de/data/sugarbeets2016/ .

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3