Rearrangement on lattices with pick-n-swaps: Optimality structures and efficient algorithms

Author:

Yu Jingjin1ORCID

Affiliation:

1. Department of Computer Science, Rutgers University, USA

Abstract

We study a class of rearrangement problems under a novel pick-n-swap prehensile manipulation model, in which a robotic manipulator, capable of carrying an item and making item swaps, is tasked to sort items stored in lattices of variable dimensions in a time-optimal manner. We systematically analyze the intrinsic optimality structure, which is fairly rich and intriguing, under different levels of item distinguishability (fully-labeled, where each item has a unique label, or partially-labeled, where multiple items may be of the same type) and different lattice dimensions. Focusing on the most practical setting of one and two dimensions, we develop low polynomial time cycle-following-based algorithms that optimally perform rearrangements on 1D lattices under both fully- and partially-labeled settings. On the other hand, we show that rearrangement on 2D and higher-dimensional lattices become computationally intractable to optimally solve. Despite their NP-hardness, we prove that efficient cycle-following-based algorithms remain optimal in the asymptotic sense for 2D fully- and partially-labeled settings, in expectation, using the interesting fact that random permutations induce only a small number of cycles. We further improve these algorithms to provide 1. x-optimality when the number of items is small. Simulation studies corroborate the effectiveness of our algorithms. The implementation of the algorithms from the paper can be found at github.com/arc-l/lattice-rearrangement.

Funder

NSF

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3