Real-time dynamics of soft and continuum robots based on Cosserat rod models

Author:

Till John1ORCID,Aloi Vincent1,Rucker Caleb1ORCID

Affiliation:

1. University of Tennessee, Knoxville, TN, USA

Abstract

The dynamic equations of many continuum and soft robot designs can be succinctly formulated as a set of partial differential equations (PDEs) based on classical Cosserat rod theory, which includes bending, torsion, shear, and extension. In this work we present a numerical approach for forward dynamics simulation of Cosserat-based robot models in real time. The approach implicitly discretizes the time derivatives in the PDEs and then solves the resulting ordinary differential equation (ODE) boundary value problem (BVP) in arc length at each timestep. We show that this strategy can encompass a wide variety of robot models and numerical schemes in both time and space, with minimal symbolic manipulation required. Computational efficiency is gained owing to the stability of implicit methods at large timesteps, and implementation is relatively simple, which we demonstrate by providing a short MATLAB-coded example. We investigate and quantify the tradeoffs associated with several numerical subroutines, and we validate accuracy compared with dynamic rod data gathered with a high-speed camera system. To demonstrate the method’s application to continuum and soft robots, we derive several Cosserat-based dynamic models for robots using various actuation schemes (extensible rods, tendons, and fluidic chambers) and apply our approach to achieve real-time simulation in each case, with additional experimental validation on a tendon robot. Results show that these models capture several important phenomena, such as stability transitions and the effect of a compressible working fluid.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3