A Bayesian Approach to Optimal Sensor Placement

Author:

Cameron Alec1,Durrant-Whyte Hugh2

Affiliation:

1. Philips Laboratories North American Philips Corporation Briarcliff Manor, New York 10510

2. Robotics Research Group, Department of Engineering Science University of Oxford Oxford OX 1 3PJ, United Kingdom

Abstract

By "intelligently" locating a sensor with respect to its envi ronment, it is possible to minimize the number of sensing operations required to perform many tasks. This is particu larly important for sensing media, such as tactile sensors and sonar, that provide only "sparse" data. In this paper, a sys tem is described that uses the principles of statistical decision theory to determine the optimal sensing locations for per forming recognition and localization operations. The system uses a Bayesian approach to utilize any prior object informa tion (including object models or previously acquired sensory data) in choosing the sensing locations.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning and Sampling-Based Informative Path Planning for AUVs in Ocean Current Fields;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2024

2. Decentralized Multi-agent information-theoretic control for target estimation and localization: finding gas leaks;The International Journal of Robotics Research;2020-09-21

3. Optimal Sensor Placement Algorithm for Structural Damage Identification;Recent Patents on Engineering;2020-06-21

4. Optimal Sensor Positioning; A Probability Perspective Study;SIAM Journal on Scientific Computing;2017-01

5. Active Classification: Theory and Application to Underwater Inspection;Springer Tracts in Advanced Robotics;2016-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3