Boundary-oriented Network for Automatic Breast Tumor Segmentation in Ultrasound Images

Author:

Zhang Mengmeng1,Huang Aibin1ORCID,Yang Debiao1,Xu Rui1

Affiliation:

1. School of Media and Design, Hangzhou Dianzi University, Hangzhou, China

Abstract

Breast cancer is considered as the most prevalent cancer. Using ultrasound images is a momentous clinical diagnosis method to locate breast tumors. However, accurate segmentation of breast tumors remains an open problem due to ultrasound artifacts, low contrast, and complicated tumor shapes in ultrasound images. To address this issue, we proposed a boundary-oriented network (BO-Net) for boosting breast tumor segmentation in ultrasound images. The BO-Net boosts tumor segmentation performance from two perspectives. Firstly, a boundary-oriented module (BOM) was designed to capture the weak boundaries of breast tumors by learning additional breast tumor boundary maps. Second, we focus on enhanced feature extraction, which takes advantage of the Atrous Spatial Pyramid Pooling (ASPP) module and Squeeze-and-Excitation (SE) block to obtain multi-scale and efficient feature information. We evaluate our network on two public datasets: Dataset B and BUSI. For the Dataset B, our network achieves 0.8685 in Dice, 0.7846 in Jaccard, 0.8604 in Precision, 0.9078 in Recall, and 0.9928 in Specificity. For the BUSI dataset, our network achieves 0.7954 in Dice, 0.7033 in Jaccard, 0.8275 in Precision, 0.8251 in Recall, and 0.9814 in Specificity. Experimental results show that BO-Net outperforms the state-of-the-art segmentation methods for breast tumor segmentation in ultrasound images. It demonstrates that focusing on boundary and feature enhancement creates more efficient and robust breast tumor segmentation.

Funder

The Project Supported by Natural Science Foundation of Zhejiang Province

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3