Quantitative mixing measurements and stochastic variability of a vaporizing gasoline direct-injection spray

Author:

Blessinger Matthew12,Manin Julien1,Skeen Scott A1,Meijer Maarten3,Parrish Scott4,Pickett Lyle M1

Affiliation:

1. Combustion Research Facility, Sandia National Laboratories, Livermore, CA, USA

2. Engine Research Center, Department of Mechanical Engineering, University of Wisconsin—Madison, Madison, WI, USA

3. Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

4. General Motors Global R&D, Warren, MI, USA

Abstract

Spark-ignition direct-injection engines operating in a stratified, lean-burn regime offer improved engine efficiency; however, seemingly random fluctuations in stratified combustion that result in partial-burn or misfire prevent widespread implementation. Eliminating these poor combustion events requires detailed understanding of engine flow, fuel delivery, and ignition, but knowing the dominant cause is difficult because they occur simultaneously in an engine. This study investigated the variability in fuel–air mixture linked to fuel injection hardware in a near-quiescent pressure vessel at high-temperature conditions representative of late, stratified-charge injection. An eight-hole spark-ignition direct-injection spray was interrogated using high-speed schlieren and Mie-scatter imaging from multiple, simultaneous views to acquire the vapor and liquid envelopes of the spray. The mixture fraction of vaporized sections of the spray was then quantified at a plane between plumes using Rayleigh scattering. Probability contours of the line-of-sight vapor envelope showed little variability between injections, whereas probability contours derived from planar, quantitative mixing measurements exhibit greater amounts of variability for lean-combustion-limit charge. The mixture field between plumes was characterized by multi-hole and end-of-injection dynamics that attract the plumes to each other and toward the injection axis, resulting in a liquid-fuel-droplet-dense merged central jet in the planar measurements. Supplemental long-working distance microscopy imaging showed the existence of fuel droplets far downstream in the region of the planar laser measurements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3