Experimental assessment of diesel engine cylinder deactivation performance during low-load transient operations

Author:

Allen Cody M1,Joshi Mrunal C1,Gosala Dheeraj B1ORCID,Shaver Gregory M1ORCID,Farrell Lisa2,McCarthy James3

Affiliation:

1. Purdue University, West Lafayette, IN, USA

2. Cummins Technical Center, Columbus, IN, USA

3. Eaton, Galesburg, MI, USA

Abstract

Fuel-efficient aftertreatment thermal management in modern diesel engines is a difficult challenge, especially during low-load operation. This study explores the performance of cylinder deactivation in a diesel engine during low-load operation following highway cruise through experimental evaluation of two drive cycles, specifically extended idle and repeated heavy heavy-duty diesel truck creep cycles. Cylinder deactivation operations are shown to maintain comparable aftertreatment thermal management performance to conventional thermal management operation while reducing fuel up to 40% during extended idle operation. This fuel efficiency improvement coincides with engine-out emission reductions of 72% for soot and 52% for NOx. Cylinder deactivation also shows improved thermal management compared to a more fuel-efficient conventional operation.

Funder

Eaton Corporation

Cummins Incorporated

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3