Modeling of gaseous emissions and soot in 3D-CFD in-cylinder simulations of spark-ignition engines: A methodology to correlate numerical results and experimental data

Author:

Berni Fabio1,Mortellaro Fabio2ORCID,Pessina Valentina1ORCID,Paltrinieri Stefano2,Pulvirenti Francesco2,Rossi Vincenzo2ORCID,Borghi Massimo1ORCID,Fontanesi Stefano1ORCID

Affiliation:

1. Dipartimento di Ingegneria “Enzo Ferrari,” Università degli Studi di Modena e Reggio Emilia, Modena, Italy

2. Ferrari s.p.a., Maranello, Italy

Abstract

In order to reduce development costs and time-to market, 1D and 3D CFD tools can support engine design providing reliable estimations of the tailpipe emissions. In particular, 3D-CFD in-cylinder simulations can evaluate formation of both soot and gaseous pollutants inside the combustion chamber. The main issue in such kind of simulations is the validation against experimental findings. In fact, the complexity of the emission measurements does not allow a straightforward one-to-one comparison between numerical and experimental results. Therefore the present paper aims at providing, on the one hand, a robust numerical framework for both gaseous and solid emissions, on the other hand a dedicated post-processing for a fair comparison between simulations and experiments. From a numerical standpoint, a simplified approach is dedicated to gaseous emissions, while a more detailed one is reserved to soot modeling. The latter is based on the Sectional Method, whose reaction rates are tabulated following 0D chemical kinetic simulations of a purposely designed surrogate in a constant pressure reactor. Simulations and experiments proposed in the present analysis are referred to a high-performance turbocharged direct-injection spark-ignition engine operated at part-load and low rpms. On equal performance, revving speed and mean mixture quality, different injection timings are investigated. The developed numerical approach and post-processing ensure a good agreement between simulations and experiments.

Funder

regione emilia-romagna

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3