Assessment of the reliability of ionization current measurement in estimating peak pressure angle in a spark ignition engine

Author:

Giglio Veniero1ORCID,Della Ragione Livia1,Gaeta Alessandro di1,Rispoli Natale2ORCID

Affiliation:

1. Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS), Consiglio Nazionale delle Ricerche, Naples, Italy

2. Istituto per la Scienza e la Tecnologia dei Plasmi (ISTP), Consiglio Nazionale delle Ricerche, Milan, Italy

Abstract

Ionization current measured at the spark plug during combustion in spark ignition engines has often been proposed to determine the crank-angle at combustion pressure peak, namely the peak pressure angle, for the purpose of regulating spark timing to attain maximum brake torque (MBT). The proposal is based on the assumption that agreement exists between peak pressure angle and the angular position of the ionization current second peak, although no one has ever proved it by an appropriate statistical analysis. The aim of this work, for the first time and by rigorous statistical methods, is to prove the agreement between Peak Pressure Angle and Ionization Current Second Peak Angle (ICSPA), without which a MBT control via ICSPA would be ineffective. Our experimental database consisted of about 9000 pairs of Peak Pressure Angle and Ionization Current Second Peak Angle values corresponding to 90 different operating conditions of a spark ignition engine. A two-sample comparison was first carried out between mean values of Peak Pressure Angle and Ionization Current Second Peak Angle, which showed a statistically significant difference between them. Then Bland-Altman analysis (Lancet, 1986), widely known and used for checking agreement between two different measurement methods, was conducted. It demonstrated that under almost all the experimental operating conditions, there was no agreement between the Ionization Current Second Peak Angle and the Peak Pressure Angle.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3