Three-stage hyperelliptic Kalman filter for health and performance monitoring of aeroengine under multi-source uncertainty

Author:

Rui-Qian Sun1ORCID,Lin-Feng Gou1,Zong-Yao Liu1,Xiao-Bao Han1

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi’an, China

Abstract

Aeroengine operation is inevitably subject to multi-source uncertainty, which consists of epistemic uncertainty related to the aeroengine and stochastic uncertainty associated with the control system. This paper presents a solution for health and performance monitoring under multi-source uncertainty to ensure the safety and reliability of aeroengine whole-life operation in complex environments. Based on the hyperelliptic Kalman filter (HeKF), optimal health monitoring is achieved by treating health parameters as the augmented state. Meanwhile, the conservativeness-reduced output prediction is realized with the extra estimation of the unknown state function bias caused by probabilistic system parameters. Considering the computational effort can be significantly reduced by designing a multi-stage filter, the three-stage hyperelliptic Kalman filter (ThSHeKF) is finally developed, achieving high accuracy health parameter estimation and adaptive performance prediction under multi-source uncertainty. Open-loop and closed-loop numerical simulations demonstrate the effectiveness of the proposed ThSHeKF-based health and performance monitoring with high estimation accuracy. Furthermore, compared to the most commonly used extended Kalman filter (EKF), Monte Carlo (MC) experiments shows that the proposed ThSHeKF is less conservative, has better robustness, and is superior in adaptive monitoring under multi-source uncertainty.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3