A computational chemistry approach for friction reduction of automotive engines

Author:

Morita Yusuke1,Jinno Satoshi1,Murakami Motoichi1,Hatakeyama Nozomu2,Miyamoto Akira2

Affiliation:

1. Higashifuji Technical Center, Toyota Motor Corporation, Shizuoka, Japan

2. New Industry Creation Hatchery Center, Tohoku University, Miyagi, Japan

Abstract

To improve the fuel efficiency of automobile internal combustion engines, the friction reduction of each engine moving part is important. Recently, carbon films have been attracting much interest as surface-coating materials due to its excellent properties such as low friction and good wear resistance. In this study, the low-friction mechanisms of carbon films were analyzed using molecular dynamics simulations and density functional theory calculations. Molecular dynamics simulation results showed that the termination of OH groups on the surface of the diamond substantially reduced the friction coefficient from 0.07 to 0.01. This reduction was achieved because termination of OH groups weakened the covalent interaction between Fe and C atoms, which was indicated by density functional theory calculations. Additionally, based on the concept of terminating the OH groups on the surface of diamond-like carbon films, we carried out the reciprocating friction experiment between hydrogen-free diamond-like carbon surface and glycerin, which contains large number of OH groups. The friction coefficient of the glycerin was 0.028, much lower than that of the base oil, which was 0.075. The experiments confirmed that OH groups on the surface of hydrogen-free diamond-like carbon films greatly improved the friction properties of its films.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3