A study on misfire detection by calculating crank angular velocity considering in-cylinder gas properties

Author:

Hasegawa Ryo1ORCID,Aoyama Yukitoshi1

Affiliation:

1. Higashifuji Technical Center, Toyota Motor Corporation, Susono, Shizuoka, Japan

Abstract

Misfire detection using a new crank angular velocity calculation was studied for high efficiency and robust engine ignition performance and combustion stability control. An applying production was achieved by applying in-cylinder gas properties prediction and its correction to the misfire index and verifying it under various conditions. The relationship between the misfire index and torque fluctuation was consistent depending on the combustion control factors EGR, injection timing, pilot injection quantity change, and environmental change factors water temperature and intake gas temperature. On the other hand, it was found that the piston speed changes due to the in-cylinder pressure with respect to the intake pressure, and the crank angular speed needs to be corrected. Commonly used sensors for engine cooling water temperature, intake gas temperature, intake pressure, and engine speed were used as representative values for in-cylinder pressure, and the cooling loss was subtracted from the polytropic index and the reduction in specific heat ratio due to EGR was corrected. By building a new model that calculates the compression end pressure model from the polytropic index and adding corrections to the misfire index, we applied logic that can be calculated for each cycle to the ECU onboard. Conventionally, compression end pressure prediction requires calculations that take combustion conditions into account, which requires the number of sensors and their accuracy, and a long calculation time. However, in this study, Authors focused on the fact that the pressure at TDC during a misfire does not include ignition and combustion phenomena and expressed the necessary physical phenomena using the minimum sensor information. As a result of the above, a control structure at a level that can be applied to products was obtained.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3