Experimental mild conversion of a lean burn natural gas engine with SCR to a hydrogen engine: NOx and GWP potential for marine applications

Author:

Schröder Alexander1ORCID,Eicheldinger Stefan1ORCID,Prager Maximilian1ORCID,Jaensch Malte1ORCID

Affiliation:

1. Chair of Sustainable Mobile Drivetrains, Technical University of Munich, München, Germany

Abstract

Emissions of nitrogen oxides (NOx) from marine propulsion systems have gained public interest resulting in emission limits as defined by the International Maritime Organization (IMO) with IMO Tier III, especially for vessels operating in Emission Control Areas (ECA). The reduction of greenhouse gas emissions is also increasingly important for marine propulsion. Minimizing NOx while reducing climate impact calls for technologies such as the gas engine with aftertreatment systems, preferably with the ability to run on alternative fuels. A proven technology for reducing NOx in marine engines is the Selective Catalytic Reduction (SCR) aftertreatment system. It is also possible to avoid engine raw emissions by shifting the combustion process to lower temperature levels. Hydrogen is an alternative fuel with combustion properties enabling premixed operation at significantly higher air-fuel ratio than natural gas (NG) and thus, reducing raw NOx emissions. The study uses a systematic approach to compare emissions and efficiency of a lean-burn gas engine with a natural gas and a mild conversion hydrogen setup, utilizing two different strategies: combustion of NG with the assumption of an SCR catalyst and high raw NOx emissions and combustion of pure hydrogen using the NOx reduction potential of higher excess air. The scope of the study makes it possible to illustrate engine concepts for future applications in the displacement class of 4.8 L per cylinder. The highest efficiency of 45.3% was achieved with the natural gas engine and SCR. The concept with the lowest Global Warming Potential (GWP) was the hydrogen fueled engine under the prerequisite of using green hydrogen, accompanied by a reduction in efficiency of 0.6% compared to the efficiency optimum of NG with SCR. Assuming the use of gray hydrogen, the GWP was 48% and 52% higher than with NG and NG with SCR, respectively, at the efficiency-optimal operating points.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3