Comparative study of diesel engine cylinder deactivation transition strategies

Author:

Allen Cody M1,Gosala Dheeraj B1ORCID,Shaver Gregory M1,McCarthy James2

Affiliation:

1. Ray W. Herrick Laboratories, Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA

2. Eaton Corporation, Galesburg, MI, USA

Abstract

Cylinder deactivation is an effective strategy to improve diesel engine fuel efficiency and aftertreatment thermal management when implemented through deactivation of both fueling and valve motion for a set of cylinders. Brake power is maintained by injecting additional fuel into the remaining activated cylinders. The initial deactivation of cylinders can be accomplished in various ways, the two most common options being to trap freshly inducted charge in the deactivated cylinders or to trap combusted gases in the deactivated cylinders. The choice of trapping strategy dictates the in-cylinder pressure characteristics of the deactivated cylinders and has potential to affect torque, oil consumption, and emissions upon reactivation. The effort described here compares these trapping strategies through examination of in-cylinder pressures following deactivation. Proponents of each trapping strategy exist; however, the results discussed here suggest no significant performance differences. As an example, the in-cylinder pressures of both trapping strategies converge as quickly as seven cycles, less than 1 s, after deactivation at curb idle conditions.

Funder

Cummins Incorporated

Eaton Corporation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3