Stochastic Bayesian optimization for predicting borderline knock

Author:

Tang Jian1ORCID,Pal Anuj1ORCID,Dai Wen2,Archer Chad2,Yi James2,Zhu Guoming1ORCID

Affiliation:

1. Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA

2. Ford Motor Company, Dearborn, MI, USA

Abstract

Engine knock is an undesirable combustion that could damage the engine mechanically. On the other hand, it is often desired to operate the engine close to its borderline knock limit to optimize combustion efficiency. Traditionally, borderline knock limit is detected by sweeping tests of related control parameters for the worst knock, which is expensive and time consuming, and also, the detected borderline knock limit is often used as a feedforward control without considering its stochastic characteristics without compensating current engine operational condition and type of fuel used. In this paper, stochastic Bayesian optimization method is used to obtain a tradeoff between stochastic knock intensity and fuel economy. The log-nominal distribution of knock intensity signal is converted to Gaussian one using a proposed map to satisfy the assumption for Kriging model development. Both deterministic and stochastic Kriging surrogate models are developed based on test data using the Bayesian iterative optimization process. This study focuses on optimizing two competing objectives, knock intensity and indicated specific fuel consumption using two control parameters: spark and intake valve timings. Test results at two different operation conditions show that the proposed learning algorithm not only reduces required time and cost for predicting knock borderline but also provides control parameters, based on trained surrogate models and the corresponding Pareto front, with the best fuel economy possible.

Funder

Ford MSU Alliance Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3