Development of physics-based three-way catalytic converter model for real-time distributed temperature prediction using proper orthogonal decomposition and collocation

Author:

Zhu Zhaoxuan1ORCID,Midlam-Mohler Shawn1,Canova Marcello1

Affiliation:

1. Center for Automotive Research, The Ohio State University, Columbus, OH, USA

Abstract

To meet the increasingly demanding emissions and fuel economy standards, the thermal management of the aftertreatment devices has recently become a priority in powertrain control. In particular, the longitudinal distribution of temperature in the three-way catalyst is a critically important variable to monitor for catalyst light-off control, thermal protection, and for diagnosing aging and degradation. However, such information is typically unavailable in production applications, due to the cost and reliability issues of instrumenting the three-way catalyst with multiple temperature sensors. This work focuses on the development and the experimental validation of a control-oriented, physics-based thermal model of a three-way catalyst for the purpose of real-time temperature monitoring. Starting from the governing equations in partial differential equation form, a model order reduction technique that combines proper orthogonal decomposition and collocation is developed. The sensitivity of the selection of the empirical basis functions is studied. To include the exothermic effect from chemical reactions, a fully connected artificial neural network is trained. The reduced-order model executes more than 100 times faster when compared to the use of standard numerical methods and commercial simulation software such as GT-Power, while providing comparable accuracy. Finally, to verify the proposed methodology, the model is calibrated and validated against experimental data collected by instrumenting a three-way catalyst with multi-point temperature measurements, and installed on an engine test bench.

Funder

foundation for innovative research groups of the national natural science foundation of china

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3