A CFD ignition model to predict average-cycle combustion in SI engines with extreme EGR levels

Author:

Ramognino Federico1ORCID,Sforza Lorenzo1,Lucchini Tommaso1ORCID,Welch Cooper2ORCID,Böhm Benjamin2,Onorati Angelo1

Affiliation:

1. Department of Energy, Politecnico di Milano, Internal Combustion Engine Group, Milano, Italy

2. Department of Mechanical Engineering, Technical University of Darmstadt, Reactive Flows and Diagnostics, Darmstadt, Germany

Abstract

Control of the combustion process in Spark-Ignition (SI) engines operated with extreme dilution from exhaust gas re-circulation (EGR) represents one of the major limitations in the industrial design of such technology. Numerical approaches able to describe in detail the formation of the early flame kernel become essential to face such an ambitious task. This work presents a RANS-based multi-dimensional model of the combustion process, including an advanced description of the ignition stage to consider its stochastic re-ignitions within the average cycle prediction. The spark-channel is described as a column of Lagrangian parcels that represent early flame kernels, whose growth is controlled by the laminar flame speed and energy input from the electrical circuit. The spatial evolution of each parcel is computed according to a scaled value of the average-flow speed, to mimic the smooth but short elongation of the mean-cycle channel produced by stochastic restrikes affecting the single-cycle arcs. To clarify this phenomenon and assess the proposed CFD method, a series of experiments are performed in a single cylinder SI engine with optical access, running at a low-load cruise-speed operating condition. Increasing EGR levels are tested up to the onset of misfire, with measurements of the secondary-circuit features and of the flame evolution through high-speed imaging. Satisfactory results are achieved in terms of numerical-experimental comparison of the cycle-averaged in-cylinder pressure, discharge parameters, and spatial flame distribution, demonstrating the reliability of the proposed numerical approach.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3