Thermodynamic efficiency assessment of gasoline spark ignition and compression ignition operating strategies using a new multi-mode combustion model for engine system simulations

Author:

Ortiz-Soto Elliott A1,Lavoie George A1,Wooldridge Margaret S12,Assanis Dennis N3

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA

2. Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA

3. Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY, USA

Abstract

Advanced combustion strategies for gasoline engines employing highly dilute and low-temperature combustion modes, such as homogeneous charge compression ignition and spark-assisted compression ignition, promise significant improvements in efficiency and emissions. This article presents a novel, reduced-order, physics-based model to capture advanced multi-mode combustion involving spark ignition, homogeneous charge compression ignition and spark-assisted compression ignition operating strategies. The purpose of such a model, which until now was unavailable, was to enhance existing capabilities of engine system simulations and facilitate large-scale parametric studies related to these advanced combustion modes. The model assumes two distinct thermodynamic zones divided by an infinitely thin flame interface, where turbulent flame propagation is captured using a new zero-dimensional formulation of the coherent flame model, and end-gas auto-ignition is simulated using a hybrid approach employing chemical kinetics and a semi-empirical burn rate model. The integrated model was calibrated using three distinct experimental data sets for spark ignition, homogeneous charge compression ignition and spark-assisted compression ignition combustion. The results demonstrated overall good trend-wise agreement with the experimental data, including the ability to replicate heat release characteristics related to flame propagation and auto-ignition during spark-assisted compression ignition combustion. The calibrated model was assessed using a large parametric study, where the predicted homogeneous charge compression ignition and spark-assisted compression ignition operating regions at naturally aspirated conditions were representative of those determined during engine testing. Practical advanced combustion strategies were assessed relative to idealized engine simulations, which showed that efficiency improvements up to 30% compared with conventional spark-ignition operation are possible. The study revealed that poor combustion efficiency and pumping work are the primary mechanisms for efficiency losses for the advanced combustion strategies evaluated.

Funder

U.S. Department of Energy

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3