Homogeneous charge compression ignition combustion stability improvement using a rapid ignition system

Author:

Gordon David1ORCID,Wouters Christian2ORCID,Kinoshita Shota3,Wick Maximilian4,Lehrheuer Bastian2,Andert Jakob5ORCID,Pischinger Stefan2,Koch Charles R1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada

2. Institute for Combustion Engines, RWTH Aachen University, Aachen, Germany

3. SOKEN, INC., Research division 1, Research department 12, Tokyo, Japan

4. FEV Europe GmbH, Aachen, Germany

5. Mechatronic Systems for Combustion Engines, RWTH Aachen University, Aachen, Germany

Abstract

When compared to traditional engines, homogeneous charge compression ignition has the potential to significantly reduce NO x raw emissions, while maintaining a high fuel efficiency. Homogeneous charge compression ignition is characterized by compression-induced autoignition of a lean homogeneous air–fuel mixture. Since homogeneous charge compression ignition does not utilize direct ignition control, it is strongly dependent on the state of the cylinder charge and can suffer from high cyclic variability. With spark-assisted compression ignition, it has been demonstrated that misfires can be reduced, while preserving the high thermal efficiency of homogeneous charge compression ignition as a result of the more favorable physical mixture properties due to dilution. However, spark-assisted compression ignition reduces the NO x benefits of homogeneous charge compression ignition, as it increases the local combustion temperatures. To merge the advantages of the homogeneous charge compression ignition and the spark-assisted compression ignition combustion processes, a field-programmable gate array for detailed simulation of the physical gas exchange is combined with a rapid spark system. The low latency and computational speed of the field-programmable gate array allows the simulation process to be implemented in real time. When combined with the rapid reaction time of the high-frequency current-based rapid ignition system, a feedforward controller based on the cylinder pressure or heat release is realized. The developed model-based controller determines if a spark is required to assist the homogeneous charge compression ignition combustion process. The use of the field-programmable gate array and rapid ignition system allows for the calculation of combustion properties and controller output within 0.1 °CA. This article presents the development and experimental validation of the developed controller on a single-cylinder research engine. The combustion stability has been significantly improved as reflected in an improved standard deviation of the indicated mean effective pressure and a reduction of the combustion phasing variations. Furthermore, compared to a traditional homogeneous charge compression ignition system, the hydrocarbon emissions can be reduced, while maintaining low NO x emissions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3