Affiliation:
1. Institute of Computing, University of Campinas, Brazil
Abstract
The process of tracking the evolution of a scientific field is arduous. It allows researchers to understand trends in areas of science and predict how they may evolve. Nowadays, most of the automated mechanisms developed to assist researchers in this process do not consider the content of articles to identify changes in its structure, only the articles metadata. These methods are not suited to easily assist researchers to study the concepts that compose an area and its evolution. In this article, we propose a method to track the evolution of a scientific field at a concept level. Our method structures a scientific field using two knowledge graphs, representing distinct periods of the studied field. Then, it clusters them and identifies correspondent clusters between the knowledge graphs, representing the same subareas in distinct time periods. Our solution enables to compare the corresponding clusters, tracking their evolution. We apply and experiment our method in two case studies concerning the artificial intelligence (AI) and the biotechnology (BIO) fields. Findings indicate befitting results regarding the way their evolution can be assessed with our implemented software tool. From our analyses, we perceived evolution in broader subareas of a scientific field, as the growth of the ‘Convolutional Neural Network’ area from 2006; to specific ones, as the decrease of research works using mice to study BRAF-mutation lung cancer from 2018. This work contributes with the development of a web application with interactive user interfaces to assist researchers in representing, analysing and tracking the evolution of scientific fields at a concept level.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Subject
Library and Information Sciences,Information Systems
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献