Affiliation:
1. Department of Computer Engineering, İnönü University, Turkey
2. Department of Computer Engineering, Van Yüzüncü Yıl University, Turkey
Abstract
Automatic text summarisation is obtaining a subset that accurately represents the main text. A quality summary should contain the maximum amount of information while avoiding redundant information. Redundancy is a severe deficiency that causes unnecessary repetition of information within sentences and should not occur in summarisation studies. Although many optimisation-based text summarisation methods have been proposed in recent years, there exists a lack of research on the simultaneous optimisation of scope and redundancy. In this context, this study presents an approach in which maximum coverage and minimum redundancy, which form the two key features of a rich summary, are modelled as optimisation targets. In optimisation-based text summarisation studies, different conflicting objectives are generally weighted or formulated and transformed into single-objective problems. However, this transformation can directly affect the quality of the solution. In this study, the optimisation goals are met simultaneously without transformation or formulation. In addition, the multi-objective saplings growing-up algorithm (MO-SGuA) is implemented and modified for text summarisation. The presented approach, called Pareto optimal, achieves an optimal solution with simultaneous optimisation. Experimentation with the MO-SGuA method was tested using open-access (document understanding conference; DUC) data sets. Performance success of the MO-SGuA approach was calculated using the recall-oriented understudy for gisting evaluation (ROUGE) metrics and then compared with the competitive practices used in the literature. Testing achieved a 26.6% summarisation result for the ROUGE-2 metric and 65.96% for ROUGE-L, which represents an improvement of 11.17% and 20.54%, respectively. The experimental results showed that good-quality summaries were achieved using the proposed approach.
Subject
Library and Information Sciences,Information Systems
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献