Classification of news-related tweets

Author:

Demirsoz Orhan1,Ozcan Rifat1

Affiliation:

1. Turgut Ozal University, Turkey

Abstract

It is important to obtain public opinion about a news article. Microblogs such as Twitter are popular and an important medium for people to share ideas. An important portion of tweets are related to news or events. Our aim is to find tweets about newspaper reports and measure the popularity of these reports on Twitter. However, it is a challenging task to match informal and very short tweets with formal news reports. In this study, we formulate this problem as a supervised classification task. We propose to form a training set using tweets containing a link to the news and the content of the same news article. We preprocess tweets by removing unnecessary words and symbols and apply stemming by means of morphological analysers. We apply binary classifiers and anomaly detection to this task. We also propose a textual similarity-based approach. We observed that preprocessing of tweets increases accuracy. The textual similarity method obtains results with the highest recognition rate. Success increases in some cases when report text is used with tweets containing a link to the news report within the training set of classification studies. We propose that this study, which is made directly in consideration of tweet texts that measure the trends of national newspaper reports on social media, has a higher significance when compared to Twitter analyses made by using a hashtag. Given the limited number of scientific studies on Turkish tweets, this study makes a contribution to the literature.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Reference34 articles.

1. Dissecting Twitter: A Review on Current Microblogging Research and Lessons from Related Fields

2. Cheong M, Ray S. A Literature Review of Recent Microblogging Developments. Technical Report, Clayton School of Information Technology. Monash University, 2011.

3. What is Twitter, a social network or a news media?

4. Information credibility on twitter

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3