Affiliation:
1. Yonsei University, 134 Shinchon-dong Seodaemun-gu Seoul, 120-749, Korea,
2. Yonsei University, 134 Shinchon-dong Seodaemun-gu Seoul, 120-749, Korea
Abstract
With the usefulness of data mining in various fields of information science, various mining methods have been proposed in previous research. Recently, in these fields, data has taken the form of continuous data streams rather than finite stored data sets. In this paper, a mining method of sequential patterns over an online sequence data stream is proposed, which is useful for retrieving embedded knowledge in the data stream. The proposed method can minimize memory usage of the mining process while an error is allowed in its mining result, and supports flexible trade-off between memory usage and mining accuracy. However, the error is minimized by an accurate estimation method for the count of a sequence, which considers the ordering information of items. The proposed method can catch a recent change in a sequence data stream in a short time, by a decaying mechanism gracefully discarding old information that may be no longer useful.
Subject
Library and Information Sciences,Information Systems
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献