Efficient mining method for retrieving sequential patterns over online data streams

Author:

Chang Joong Hyuk1,Lee Won Suk2

Affiliation:

1. Yonsei University, 134 Shinchon-dong Seodaemun-gu Seoul, 120-749, Korea,

2. Yonsei University, 134 Shinchon-dong Seodaemun-gu Seoul, 120-749, Korea

Abstract

With the usefulness of data mining in various fields of information science, various mining methods have been proposed in previous research. Recently, in these fields, data has taken the form of continuous data streams rather than finite stored data sets. In this paper, a mining method of sequential patterns over an online sequence data stream is proposed, which is useful for retrieving embedded knowledge in the data stream. The proposed method can minimize memory usage of the mining process while an error is allowed in its mining result, and supports flexible trade-off between memory usage and mining accuracy. However, the error is minimized by an accurate estimation method for the count of a sequence, which considers the ordering information of items. The proposed method can catch a recent change in a sequence data stream in a short time, by a decaying mechanism gracefully discarding old information that may be no longer useful.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3