Important citations identification by exploiting generative model into discriminative model

Author:

An Xin1ORCID,Sun Xin1,Xu Shuo2ORCID,Hao Liyuan2,Li Jinghong1

Affiliation:

1. School of Economics & Management, Beijing Forestry University, P.R. China

2. Research Base of Beijing Modern Manufacturing Development, College of Economics and Management, Beijing University of Technology, P.R. China

Abstract

Although the citations between scientific documents are deemed as a vehicle for dissemination, inheritance and development of scientific knowledge, not all citations are well-positioned to be equal. A plethora of taxonomies and machine-learning models have been implemented to tackle the task of citation function and importance classification from qualitative aspect. Inspired by the success of kernel functions from resulting general models to promote the performance of the support vector machine (SVM) model, this work exploits the potential of combining generative and discriminative models for the task of citation importance classification. In more detail, generative features are generated from a topic model, citation influence model (CIM) and then fed to two discriminative traditional machine-learning models, SVM and RF (random forest), and a deep learning model, convolutional neural network (CNN), with other 13 traditional features to identify important citations. The extensive experiments are performed on two data sets with different characteristics. These three models perform better on the data set from one discipline. It is very possible that the patterns for important citations may vary by the fields, which disable machine-learning models to learn effectively the discriminative patterns from publications from multiple domains. The RF classifier outperforms the SVM classifier, which accords with many prior studies. However, the CNN model does not achieve the desired performance due to small-scaled data set. Furthermore, our CIM model–based features improve further the performance for identifying important citations.

Funder

National Natural Science Foundation of China

Social Science Foundation of Beijing Municipality

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3