An architecture and platform for developing distributed recommendation algorithms on large-scale social networks

Author:

Corbellini Alejandro11,Mateos Cristian11,Godoy Daniela11,Zunino Alejandro11,Schiaffino Silvia1

Affiliation:

1. ISISTAN Research Institute, UNICEN University, Argentina

Abstract

The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommendation algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented support able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strategies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on Intelligent Social Networking Algorithms and Their Effects on Predicting the Adequacy of Renewable Energy Sources via Social Media;2024 Second International Conference on Smart Technologies for Power and Renewable Energy (SPECon);2024-04-02

2. A Study of Reciprocal Job Recommendation for College Graduates Integrating Semantic Keyword Matching and Social Networking;Applied Sciences;2023-11-14

3. Customer Outcome Framework for Blockchain-Based Mobile Phone Applications;Principles and Practice of Blockchains;2022-11-22

4. Hierarchical K-Means Clustering Method for Friend Recommendation System;2022 International Conference on Inventive Computation Technologies (ICICT);2022-07-20

5. Mobile Payment and Mobile Application (App) Behavior for Online Recommendations;Journal of Organizational and End User Computing;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3