Using community information for natural disaster alerts

Author:

Chen Chun Chieh1ORCID,Wang Hei-Chia12

Affiliation:

1. Institute of Information Management, National Cheng Kung University

2. Center for Innovative FinTech Business Models, National Cheng Kung University

Abstract

Recently, the ceaseless rise in the global average temperature has led to extreme climates in which natural disasters, such as droughts, hurricanes, earthquakes and floods, are becoming increasingly serious. Recent research has found that social media typically reflects disasters earlier than official communication channels. In this study, the idea of collecting information on flood disasters caused during the periods of typhoons and heavy rains for a city from the plain text messages released by social media by means of a term frequency (TF) and sliding window approach is proposed. The dataset analysed here contains a total of 292 articles and 12,484 tweets. This research determines how to establish a warning mechanism, with an added notification time for flooding disasters, and it shows how to provide relevant disaster relief personnel with references. This article contributes by combining social media data with emergency management information cloud (EMIC) data, especially in the context of having a mechanism for warning about flooding disasters. According to the experimental results, a sliding window of 90 min and a sliding gap of 10 min obtained the best F-measure value ( F = 0.315). The event studied was Typhoon Megi (September 2016), which caused major flooding in Tainan. For the Typhoon Megi event, the flood disaster location database had 161 streets available for matching. Based on the experimental results, it is possible to obtain a high-precision (90% or higher) accuracy rate from real-time tweet data by exploiting a social media dataset.

Funder

Ministry of Science and Technology, Taiwan

Center of Innovative Fintech Business Models

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3