Flavonoids Regulate Lipid Droplets Biogenesis in Drosophila melanogaster

Author:

Fantin Marianna1,Garelli Francesca2,Napoli Barbara1,Forgiarini Alessia2,Gumeni Sentiljana3,De Martin Sara2,Montopoli Monica2,Vantaggiato Chiara1,Orso Genny2

Affiliation:

1. Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy

2. Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy

3. Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece

Abstract

Lipid droplets (LDs), cytosolic fat storage organelles, are emerging as major regulators of lipid metabolism, trafficking, and signaling in various cells and tissues. LDs are altered in cardiovascular and neuronal disorders, inflammation, obesity, and cancer. Flavonoids comprise different classes of molecules, characterized by a well-known antioxidant activity and a beneficial effect in several diseases. However, the cellular mechanism by which different classes of flavonoids improve health is poorly understood, in particular as far as LDs biogenesis is concerned. Here we used Drosophila melanogaster as a model system to investigate the effects of a selected group of flavonoids on larval tissues by examining LDs biogenesis. In our study, fruit flies were grown in xanthohumol-, isoquercetin-, and genistein-enriched food and larval tissues were analyzed using a LD marker. Total mRNA expression of two main enzymes (minotaur and midway) responsible for triacylglycerides synthesis was evaluated after treatments. Among the flavonoids analyzed, xanthohumol and isoquercetin resulted to be potent regulators of LDs biogenesis in a tissue-specific manner, inducing fat storage decrease in fat bodies and accumulation of LDs in nerves. Since LDs have been suggested to play a protective role against intracellular stress in nonadipocyte cells, our data support the hypothesis that some phytochemicals could act as strong modulators of LDs biogenesis in vivo. The knowledge of how different flavonoids act on lipid metabolism in different tissues can help to manage the use of phytochemicals with the aim of selectively ameliorating specific neuronal and metabolic diseases’ manifestations.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3