Influence of the Cardiomyocyte Circadian Clock on Cardiac Physiology and Pathophysiology

Author:

Martino Tami A.1,Young Martin E.2

Affiliation:

1. Cardiovascular Research Group, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada

2. Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA

Abstract

Cardiac function and dysfunction exhibit striking time-of-day-dependent oscillations. Disturbances in both daily rhythms and sleep are associated with increased risk of heart disease, adverse cardiovascular events, and worsening outcomes. For example, the importance of maintaining normal daily rhythms is highlighted by epidemiologic observations that night shift workers present with increased incidence of cardiovascular disease. Rhythmicity in cardiac processes is mediated by a complex interaction between extracardiac (e.g., behaviors and associated neural and humoral fluctuations) and intracardiac influences. Over the course of the day, the intrinsic properties of the myocardium vary at the levels of gene and protein expression, metabolism, responsiveness to extracellular stimuli/stresses, and ion homeostasis, all of which affect contractility (e.g., heart rate and force generation). Over the past decade, the circadian clock within the cardiomyocyte has emerged as an essential mechanism responsible for modulating the intrinsic properties of the heart. Moreover, the critical role of this mechanism is underscored by reports that disruption, through genetic manipulation, results in development of cardiac disease and premature mortality in mice. These findings, in combination with reports that numerous cardiovascular risk factors (e.g., diet, diabetes, aging) distinctly affect the clock in the heart, have led to the hypothesis that aberrant regulation of this mechanism contributes to the etiology of cardiac dysfunction and disease. Here, we provide a comprehensive review on current knowledge regarding known roles of the heart clock and discuss the potential for using these insights for the future development of innovative strategies for the treatment of cardiovascular disease.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3