Genome Streamlining Results in Loss of Robustness of the Circadian Clock in the Marine Cyanobacterium Prochlorococcus marinus PCC 9511

Author:

Holtzendorff Julia1,Partensky Frédéric1,Mella Daniella1,Lennon Jean-François1,Hess Wolfgang R.2,Garczarek Laurence3

Affiliation:

1. Université Pierre et Marie Curie (Paris 06) and Centre National de la Recherche Scientifique (UMR 7144), Station Biologique, France

2. Freiburg University, Institute of Biology , Experimental Bioinformatics, Freiburg, Germany

3. Université Pierre et Marie Curie (Paris 06) and Centre National de la Recherche Scientifique (UMR 7144), Station Biologique, France,

Abstract

The core oscillator of the circadian clock in cyanobacteria consists of 3 proteins, KaiA, KaiB, and KaiC. All 3 have previously been shown to be essential for clock function. Accordingly, most cyanobacteria possess at least 1 copy of each kai gene. One exception is the marine genus Prochlorococcus, which we suggest here has suffered a stepwise deletion of the kaiA gene, together with significant genome streamlining. Nevertheless, natural Prochlorococcus populations and laboratory cultures are strongly synchronized by the alternation of day and night, displaying 24-h rhythms in DNA replication, with a temporal succession of G1, S, and G2-like cell cycle phases. Using quantitative real-time PCR, we show here that in Prochlorococcus marinus PCC 9511, the mRNA levels of the clock genes kaiB and kaiC, as well as a few other selected genes including psbA, also displayed marked diel variations when cultures were kept under a light-dark rhythm. However, both cell cycle and psbA gene expression rhythms damped very rapidly under continuous light. In the closely related Synechococcus sp. WH8102, which possesses all 3 kai genes, cell cycle rhythms persisted over several days, in agreement with established cyanobacterial models. These data indicate a correlation between the loss of kaiA and a loss of robustness in the endogenous oscillator of Prochlorococcus and raise questions about how a basic KaiBC system may function and through which mechanism the daily “lights-on” and “lights-off” signal could be mediated.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3