Effect of differences in proximal neck angles on biomechanics of abdominal aortic aneurysm based on fluid dynamics

Author:

Wang Yang-yi-jing1,Chen Jie1ORCID,Luo Dong-yang1,Chen Hui1,Deng Zhi-he1,Chen Meng-zhi1,Mi Si-yuan1,Xie Qian-qian1,Zou Qing-qing1,Xiong Guo-zuo1,Bi Guo-shan1ORCID

Affiliation:

1. Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China

Abstract

Background This study aimed to analyze the effect of proximal neck angulation on the biomechanical indices of abdominal aortic aneurysms (AAA) and to investigate its impact on the risk of AAA rupture. Methods CT angiography (CTA) data of patients with AAA from January 2015 to January 2022 were collected. Patients were divided into three groups based on the angle of the proximal neck: Group A (∠β ≤ 30°), Group B (30°<∠β ≤ 60°), and Group C (∠β > 60°). Biomechanical indices related to the rupture risk of AAA were analyzed using computational fluid dynamics modeling (CFD-Post) based on the collected data. Results Group A showed slight turbulence in the AAA lumen with a mixed laminar flow pattern. Group B had a regular low-speed eddy line characterized by cross-flow dominated by lumen blood flow and turbulence. In Group C, a few turbulent lines appeared at the proximal neck, accompanied by eddy currents in the lumen expansion area following the AAA shape. Significant differences were found in peak wall stress, shear stress, and the maximum blood flow velocity impact among the three groups. The maximum blood flow velocity at the angle of the proximal neck impact indicated the influence of the proximal neck angle on the blood flow state in the lumen. Conclusion As the angle of the proximal neck increased, it caused stronger eddy currents and turbulent blood flow due to a high-speed area near the neck. The region with the largest diameter in the abdominal aortic aneurysm was prone to the highest stress, indicating a higher risk of rupture. The corner of the proximal neck experienced the greatest shear stress, potentially leading to endothelial injury and further enlargement of the aneurysm.

Funder

Hengyang science and technology innovation Projec

Hunan Clinical Medical Research Center for Thrombo

Hunan Province Clinical Medical Technology Innovat

Hunan Provincial Natural Science Foundation of You

University of South China Clinical Research 4310 P

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3