Building a specialized lexicon for breast cancer clinical trial subject eligibility analysis

Author:

Jung Euisung1ORCID,Jain Hemant2,Sinha Atish P3,Gaudioso Carmelo4

Affiliation:

1. Information Operations and Technology Management, John B. and Lillian E. Neff College of Business and Innovation, The University of Toledo, USA

2. Gary W. Rollins College of Business, The University of Tennessee at Chattanooga, USA

3. Lubar School of Business, University of Wisconsin-Milwaukee, USA

4. Roswell Park Cancer Institute, USA

Abstract

A natural language processing (NLP) application requires sophisticated lexical resources to support its processing goals. Different solutions, such as dictionary lookup and MetaMap, have been proposed in the healthcare informatics literature to identify disease terms with more than one word (multi-gram disease named entities). Although a lot of work has been done in the identification of protein- and gene-named entities in the biomedical field, not much research has been done on the recognition and resolution of terminologies in the clinical trial subject eligibility analysis. In this study, we develop a specialized lexicon for improving NLP and text mining analysis in the breast cancer domain, and evaluate it by comparing it with the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT). We use a hybrid methodology, which combines the knowledge of domain experts, terms from multiple online dictionaries, and the mining of text from sample clinical trials. Use of our methodology introduces 4243 unique lexicon items, which increase bigram entity match by 38.6% and trigram entity match by 41%. Our lexicon, which adds a significant number of new terms, is very useful for matching patients to clinical trials automatically based on eligibility matching. Beyond clinical trial matching, the specialized lexicon developed in this study could serve as a foundation for future healthcare text mining applications.

Publisher

SAGE Publications

Subject

Health Informatics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3