Quality analysis of a breast thermal images database

Author:

Pérez-Martín Jorge1ORCID,Sánchez-Cauce Raquel1ORCID

Affiliation:

1. Department of Artificial Intelligence, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain

Abstract

The study and early detection of breast cancer are key for its treatment. We carry out an exhaustive analysis of the most used database for mastology research with infrared images, analyzing the anomalies according to five quality dimensions: completeness, correctness, concordance, plausibility, and currency. We established control queries that looked for these anomalies and that can be used to ensure the quality of the database. Finally, we briefly review the more than 40 papers that use this database and that do not mention any of these anomalies. When analyzing the database, we found 365 anomalies related to personal and clinical data, and thermal images. The errors found in our research may lead to a modification of the results and conclusions made in the articles found in the literature, serve as a basis for improvements in the quality of the database, and help future researchers to work with it.

Funder

Secretaría de Estado de Investigación, Desarrollo e Innovación

Ministerio de Ciencia e Innovación

Consejería de Educación, Juventud y Deporte, Comunidad de Madrid

Publisher

SAGE Publications

Subject

Health Informatics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning for Early Breast Cancer Detection;Journal of Engineering and Science in Medical Diagnostics and Therapy;2024-07-26

2. Comparative Study of Artificial Intelligence Models for Breast Cancer Detection;Journal of Trends in Computer Science and Smart Technology;2024-03

3. Dynamic Vascular Imaging Using Active Breast Thermography;Sensors;2023-03-10

4. Automated tumor segmentation in thermographic breast images;Mathematical Biosciences and Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3