The DataScope: A Mixed-Initiative Architecture for Data Labeling

Author:

Alsaid Areen1,Lee John D.2

Affiliation:

1. University of Michigan – Dearborn, Dearborn, Michigan

2. University of Wisconsin – Madison, Madison, Wisconsin

Abstract

Machine learning promises many advantages, but achieving these promises requires methods that smooth the interaction between humans and machine learning. Machine learning systems require meticulous training on large, labeled datasets. Labeling data is a tedious expensive process, and many times requires complex human-judgment skills. Mixed-initiative designs divide the labor between the artificial agent and the human to make the task at hand more efficient and effective. This paper proposes a mixed-initiative method for efficient coding of video and image data in general and emotion data in particular. We integrate an unsupervised dimensionality reduction algorithm and the R Shiny platform to develop an interactive method that leverages human expertise to label the data more efficiently and effectively. The method, through the interactive web tool, allows the user to explore the data interactively, examine similarities and dissimilarities in the data, and label clusters of many images and video frames at once. The combination of the unsupervised learning algorithm and the R Shiny platform enables interactive exploration and annotation of high-dimensional, complicated data. This method can be used to annotate large data sets faster and can advance research in machine vision.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3