Measuring Human Detection Performance in Aircraft Visual Inspection

Author:

Drury Colin G.1,Spencer Floyd W.2,Schurman Donald L.3

Affiliation:

1. State University of New York at Buffalo Department of Industrial Engineering Buffalo, NY 14260-2050

2. Sandia National Laboratories Aging Aircraft Non-Destructive Testing Center (AANC) Albuquerque, NM 87185-5800

3. Idaho National Engineering and Environmental Laboratory Idaho Falls, ID 93415-3855

Abstract

In airworthiness assurance, while there is a long tradition of measuring inspection reliability for machine-aided Non-Destructive Inspection (NDI), the more common visual inspection has received little attention. Yet inspection reliability measurements are needed if we are to set appropriate inspection intervals for airframe components. Visual inspection of aircraft is characterized as using multiple senses (despite its name) and having to inspect for multiple fault types, in contrast to NDI which is used for single specific fault types. The study here used 12 professional inspectors to perform nine visual inspection tasks on a long-service Boeing 737 aircraft. Each inspector worked over two days. Measures were taken of performance, strategy and individual differences. Only a fraction of the results are presented here, with a major finding that aircraft visual inspection has approximately the same reliability as industrial inspection. Individual differences were found, as well as correlations between certain aspects of performance and individual characteristics such as Field Independence and Peripheral Visual Acuity. However, there was little correlation between an individual inspector's performance on the different tasks, showing the difficulty of designing selection and placement procedures for such a wide-ranging job.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

Reference6 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3