Ventilated Patients With COVID-19 Show Airflow Obstruction

Author:

Koppurapu Vikas S.1,Puliaiev Maksym1ORCID,Doerschug Kevin C.1,Schmidt Gregory A.1

Affiliation:

1. Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA

Abstract

Objective: Many patients with coronavirus disease 2019 (COVID-19) need mechanical ventilation secondary to acute respiratory distress syndrome. Information on the respiratory system mechanical characteristics of this disease is limited. The aim of this study is to describe the respiratory system mechanical properties of ventilated COVID-19 patients. Design, Setting, and Patients: Patients consecutively admitted to the medical intensive care unit at the University of Iowa Hospitals and Clinics in Iowa City, USA, from April 19 to May 1, 2020, were prospectively studied; final date of follow-up was May 1, 2020. Measurements: At the time of first patient contact, ventilator information was collected including mode, settings, peak airway pressure, plateau pressure, and total positive end expiratory pressure. Indices of airflow resistance and respiratory system compliance were calculated and analyzed. Main Results: The mean age of the patients was 58 years. 6 out of 12 (50%) patients were female. Of the 21 laboratory-confirmed COVID-19 patients on invasive mechanical ventilation, 9 patients who were actively breathing on the ventilator were excluded. All the patients included were on volume-control mode. Mean [±standard deviation] ventilator indices were: resistive pressure 19 [±4] cmH2O, airway resistance 20 [±4] cmH2O/L/s, and respiratory system static compliance 39 [±16] ml/cmH2O. These values are consistent with abnormally elevated resistance to airflow and reduced respiratory system compliance. Analysis of flow waveform graphics revealed a pattern consistent with airflow obstruction in all patients. Conclusions: Severe respiratory failure due to COVID-19 is regularly associated with airflow obstruction.

Publisher

SAGE Publications

Subject

Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3