A machine learning-enhanced design optimizer for urban cooling

Author:

Hao Tongping12ORCID,Huang Jianxiang12ORCID,He Xinyu3,Li Lishuai4,Jones Phil5

Affiliation:

1. Department of Urban Planning and Design, The University of Hong Kong, Hong Kong SAR, China

2. The University of Hong Kong Shenzhen Institute of Research and Innovation, Nanshan, Shenzhen, China

3. Department of System Engineering and Engineering Management, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China

4. School of Data Science, City University of Hong Kong, Hong Kong SAR, China

5. Welsh School of Architecture, Cardiff University, Cardiff, UK

Abstract

Urban cooling becomes a priority in urban planning and design practices. Limited by the slow running speed and prescriptive nature, existing computational tools such as simulation and optimization are yet to be fully integrated in the design decision-making process. This paper describes the Machine Learning-Enhanced Design Optimizer (MLEDO), a novel workflow in search of optimal design option for urban cooling. A physics-based simulation model was developed to assess the cooling performances of a large database of urban design variations. The database was used to train an Artificial Neural Network model, which was then linked with a Genetic Algorithm to rapidly identify optimal design options. The MLEDO workflow was evaluated using a new development urban site against a traditional Simulation-based Genetic Algorithm Design Optimizer (SGADO) as well as human designers. MLEDO outperformed the latter two in terms of efficiency and the performance of the optimal design options. It can also quantify the importance of design parameters in their contribution to cooling performances, which can be used to enhance the understanding of human designers and inform design revisions. MLEDO has the potential to be further developed into a software tool in support of early-stage urban design.

Funder

Natural Science Foundation of China

Hong Kong Research Grants Council Theme-Based Research Scheme

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3