Comparison of Different Fixation Techniques of the Long Head of the Biceps Tendon in Superior Capsule Reconstruction for Irreparable Posterosuperior Rotator Cuff Tears: A Dynamic Biomechanical Evaluation

Author:

Berthold Daniel P.1,Muench Lukas N.1,Dyrna Felix1,Scheiderer Bastian1,Obopilwe Elifho1,Cote Mark P.1,Krifter Michael R.1,Milano Guiseppe1,Bell Ryan1,Voss Andreas1,Imhoff Andreas B.1,Mazzocca Augustus D.1,Beitzel Knut1

Affiliation:

1. Investigation performed at the University of Connecticut Health Center/ UConn Musculoskeletal Institute, Farmington, Connecticut, USA

Abstract

Background: In the past decade, superior capsular reconstruction has emerged as a potential surgical approach in young patients with irreparable posterosuperior rotator cuff tears (RCT) and absence of severe degenerative changes. Recently, the use of locally available and biological viable autografts, such as the long head of the biceps tendon (LHBT) for SCR has emerged, with promising early results. Purpose/Hypothesis: The purpose of this study was to investigate the effect of using the LHBT for reconstruction of the superior capsule on shoulder kinematics, along with different fixation constructs in a dynamic biomechanical model. The authors hypothesized that each of the 3 proposed fixation techniques would restore native joint kinematics, including glenohumeral superior translation (ghST), maximum abduction angle (MAA), maximum cumulative deltoid force (cDF), and subacromial peak contact pressure (sCP). Study Design: Controlled laboratory study. Methods: Eight fresh-frozen cadaveric shoulders (mean age, 53.4 ± 14.2 years) were tested using a dynamic shoulder simulator. Each specimen underwent the following 5 conditions: (1) intact, (2) irreparable posterosuperior rotator cuff tear (psRCT), (3) V-shaped LHBT reconstruction, (4) box-shaped LHBT reconstruction, and (5) single-stranded LHBT reconstruction. MAA, ghST, cDF and sCP were assessed in each tested condition. Results: Each of the 3 LHBT techniques for reconstruction of the superior capsule significantly increased MAA while significantly decreasing ghST and cDF compared with the psRCT ( P < .001 and P < .001, respectively). Additionally, the V-shaped and box-shaped techniques significantly decreased sCP ( P = .009 and P = .016, respectively) compared with the psRCT. The V-shaped technique further showed a significantly increased MAA ( P < .001, respectively) and decreased cDF ( P = .042 and P = .039, respectively) when compared with the box-shaped and single-stranded techniques, as well as a significantly decreased ghST ( P = .027) when compared with the box-shaped technique. Conclusion: In a dynamic biomechanical cadaveric model, using the LHBT for reconstruction of the superior capsule improved shoulder function by preventing superior humeral migration, decreasing deltoid forces and sCP. As such, the development of rotator cuff tear arthropathy in patients with irreparable psRCTs could potentially be delayed. Clinical Relevance: Using a biologically viable and locally available LHBT autograft is a cost-effective, potentially time-saving, and technically feasible alternative for reconstruction of the superior capsule, which may result in favorable outcomes in irreparable psRCTs. Moreover, each of the 3 techniques restored native shoulder biomechanics, which may help improve shoulder function by preventing superior humeral head migration and the development of rotator cuff tear arthropathy in young patients with irreparable rotator cuff tears.

Funder

Society for Arthroscopy and Joint Surgery

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3