Effect of Initial Graft Tension During Anterior Talofibular Ligament Reconstruction on Ankle Kinematics, Laxity, and In Situ Forces of the Reconstructed Graft

Author:

Sakakibara Yuzuru1,Teramoto Atsushi1,Takagi Tetsuya2,Yamakawa Satoshi2,Shoji Hiroaki1,Okada Yohei1,Kobayashi Takuma1,Kamiya Tomoaki1,Fujimiya Mineko3,Fujie Hiromichi2,Watanabe Kota4,Yamashita Toshihiko1

Affiliation:

1. Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan

2. Biomechanics Laboratory, Faculty of System Design, Tokyo Metropolitan University, Tokyo, Japan

3. Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan

4. Department of Physical Therapy, Sapporo Medical University School of Health Science, Sapporo, Japan

Abstract

Background: Although a variety of surgical procedures for anterior talofibular ligament (ATFL) reconstruction have been reported, the effect of initial graft tension during ATFL reconstruction remains unclear. Purpose/Hypothesis: This study investigated the effects of initial graft tension on ATFL reconstruction. We hypothesized that a high degree of initial graft tension would cause abnormal kinematics and laxity. Study Design: Controlled laboratory study. Methods: Twelve cadaveric ankles were tested with a robotic system with 6 degrees of freedom to apply passive plantarflexion and dorsiflexion motions and a multidirectional load. A repeated measures experiment was designed with the intact ATFL, transected ATFL, and reconstructed ATFL at initial tension conditions of 10, 30, 50, and 70 N. The 3-dimensional path and reconstructed graft tension were simultaneously recorded, and the in situ forces of the ATFL and reconstructed graft were calculated with the principle of superposition. Results: Initial tension of 10 N was sufficient to imitate normal ankle kinematics and laxity, which were not significantly different when compared with those of the intact ankles. The in situ force on the reconstructed graft tended to increase as the initial tension increased. In situ force on the reconstructed graft >30 N was significantly greater than that of intact ankles. The in situ force on the ATFL was 19 N at 30° of plantarflexion. In situ forces of 21.9, 30.4, 38.2, and 46.8 N were observed at initial tensions of 10, 30, 50, and 70 N, respectively, at 30° of plantarflexion. Conclusion: Approximate ankle kinematic patterns and sufficient laxity, even with an initial tension of 10 N, could be obtained immediately after ATFL reconstruction. Moreover, excessive initial graft tension during ATFL reconstruction caused excessive in situ force on the reconstructed graft. Clinical Relevance: This study revealed the effects of initial graft tension during ATFL reconstruction. These data suggest that excessive tension during ATFL reconstruction should be avoided to ensure restoration of normal ankle motion.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3