Multiple Imputation of Multilevel Missing Data

Author:

Grund Simon12,Lüdtke Oliver12,Robitzsch Alexander12

Affiliation:

1. Leibniz Institute for Science and Mathematics Education, Kiel, Germany

2. Centre for International Student Assessment, Germany

Abstract

The treatment of missing data can be difficult in multilevel research because state-of-the-art procedures such as multiple imputation (MI) may require advanced statistical knowledge or a high degree of familiarity with certain statistical software. In the missing data literature, pan has been recommended for MI of multilevel data. In this article, we provide an introduction to MI of multilevel missing data using the R package pan, and we discuss its possibilities and limitations in accommodating typical questions in multilevel research. To make pan more accessible to applied researchers, we make use of the mitml package, which provides a user-friendly interface to the pan package and several tools for managing and analyzing multiply imputed data sets. We illustrate the use of pan and mitml with two empirical examples that represent common applications of multilevel models, and we discuss how these procedures may be used in conjunction with other software.

Publisher

SAGE Publications

Subject

General Social Sciences,General Arts and Humanities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3