Effects of Deep Learning Reconstruction Technique in High-Resolution Non-contrast Magnetic Resonance Coronary Angiography at a 3-Tesla Machine

Author:

Yokota Yasuhiro1,Takeda Chika2,Kidoh Masafumi1,Oda Seitaro1,Aoki Ryo2,Ito Kenichi2,Morita Kosuke3,Haraoka Kentaro4,Yamashita Yuichi4,Iizuka Hitoshi2,Kato Shingo25,Tsujita Kenichi6,Ikeda Osamu1,Yamashita Yasuyuki1,Utsunomiya Daisuke2

Affiliation:

1. Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto-shi, Japan

2. Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama-shi, Japan

3. Central Radiology, Kumamoto University Hospital, Kumamoto-shi, Japan

4. MRI Systems Division, Canon Medical Systems Corporation, Kawasaki-shi, Japan

5. Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama-shi, Japan

6. Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto-shi, Japan

Abstract

Purpose: To evaluate the effects of deep learning reconstruction (DLR) in qualitative and quantitative image quality of non-contrast magnetic resonance coronary angiography (MRCA). Methods: Ten healthy volunteers underwent conventional MRCA (C-MRCA) and high-resolution (HR) MRCA on a 3T magnetic resonance imaging with a voxel size of 1.8 × 1.1 × 1.7 mm3 and 1.8 × 0.6 × 1.0 mm3, respectively, for C-MRCA and HR-MRCA. High-resolution magnetic resonance coronary angiography was also reconstructed with the DLR technique (DLR-HR-MRCA). We compared the contrast-to-noise ratio (CNR) and visual evaluation scores for vessel sharpness and traceability of proximal and distal coronary vessels on a 4-point scale among 3 image series. Results: The vascular CNR value on the C-MRCA and the DLR-HR-MRCA was significantly higher than that on the HR-MRCA in the proximal and distal coronary arteries (13.9 ± 6.4, 11.3 ± 4.4, and 7.8 ± 2.6 for C-MRCA, DLR-HR-MRCA, and HR-MRCA, P < .05, respectively). Mean visual evaluation scores for the vessel sharpness and traceability of proximal and distal coronary vessels were significantly higher on the HR-DLR-MRCA than the C-MRCA ( P < .05, respectively). Conclusion: Deep learning reconstruction significantly improved the CNR of coronary arteries on HR-MRCA, resulting in both higher visual image quality and better vessel traceability compared with C-MRCA.

Funder

Canon Medical Systems Corporation

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3