Evaluating the gray and white matter energy budgets of human brain function

Author:

Yu Yuguo1,Herman Peter234,Rothman Douglas L2345,Agarwal Divyansh346,Hyder Fahmeed2345

Affiliation:

1. School of Life Science and the Collaborative Innovation Center for Brain Science, the Center for Computational Systems Biology, Fudan University, Shanghai, China

2. Department of Radiology and Biomedical Imaging Yale University, New Haven, CT, USA

3. Magnetic Resonance Research Center, Yale University, New Haven, CT, USA

4. Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT, USA

5. Department of Biomedical Engineering, Yale University, New Haven, CT, USA

6. Currently at Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Abstract

The insatiable appetite for energy to support human brain function is mainly supplied by glucose oxidation (CMRglc(ox)). But how much energy is consumed for signaling and nonsignaling processes in gray/white matter is highly debated. We examined this issue by combining metabolic measurements of gray/white matter and a theoretical calculation of bottom-up energy budget using biophysical properties of neuronal/glial cells in conjunction with species-exclusive electrophysiological and morphological data. We calculated a CMRglc(ox)-derived budget and confirmed it with experimental results measured by PET, autoradiography, 13C-MRS, and electrophysiology. Several conserved principles were observed regarding the energy costs for brain’s signaling and nonsignaling components in both human and rat. The awake resting cortical signaling processes and mass-dependent nonsignaling processes, respectively, demand ∼70% and ∼30% of CMRglc(ox). Inhibitory neurons and glia need 15–20% of CMRglc(ox), with the rest demanded by excitatory neurons. Nonsignaling demands dominate in white matter, in near opposite contrast to gray matter demands. Comparison between 13C-MRS data and calculations suggests ∼1.2 Hz glutamatergic signaling rate in the awake human cortex, which is ∼4 times lower than signaling in the rat cortex. Top-down validated bottom-up budgets could allow computation of anatomy-based CMRglc(ox) maps and accurate cellular level interpretation of brain metabolic imaging.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3