Active conductive head cooling of normal and infarcted brain: A magnetic resonance spectroscopy imaging study

Author:

Diprose William K12ORCID,Morgan Catherine A34ORCID,Wang Michael TM12,Diprose James P5,Lin Joanne C6,Sheriff Sulaiman7,Campbell Doug8,Barber P Alan12

Affiliation:

1. Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand

2. Department of Neurology, Auckland City Hospital, Auckland, New Zealand

3. Centre for Advanced MRI, The University of Auckland, Auckland, New Zealand

4. School of Psychology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand

5. Independent Computer Scientist, Auckland, New Zealand

6. School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand

7. Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, USA

8. Department of Anaesthesia and Perioperative Medicine, Auckland City Hospital, Auckland, New Zealand

Abstract

Active conductive head cooling is a simple and non-invasive intervention that may slow infarct growth in ischemic stroke. We investigated the effect of active conductive head cooling on brain temperature using whole brain echo-planar spectroscopic imaging. A cooling cap (WElkins Temperature Regulation System, 2nd Gen) was used to administer cooling for 80 minutes to healthy volunteers and chronic stroke patients. Whole brain echo-planar spectroscopic imaging scans were obtained before and after cooling. Brain temperature was estimated using the Metabolite Imaging and Data Analysis System software package, which allows voxel-level temperature calculations using the chemical shift difference between metabolite (N-acetylaspartate, creatine, choline) and water resonances. Eleven participants (six healthy volunteers, five post-stroke) underwent 80 ± 5 minutes of cooling. The average temperature of the coolant was 1.3 ± 0.5°C below zero. Significant reductions in brain temperature (ΔT = –0.9 ± 0.7°C, P = 0.002), and to a lesser extent, rectal temperature (ΔT = –0.3 ± 0.1°C, P = 0.03) were observed. Exploratory analysis showed that the occipital lobes had the greatest reduction in temperature (ΔT = –1.5 ± 1.2°C, P = 0.002). Regions of infarction had similar temperature reductions to the contralateral normal brain. Future research could investigate the feasibility of head cooling as a potential neuroprotective strategy in patients being considered for acute stroke therapies.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3