Affiliation:
1. Department of Chemical Engineering, Maharaja Sayajirao University of Baroda, Kalabhavan, Gujarat, India
2. R&D Centre, PCBL Limited, Bharuch, India
Abstract
The carbon black, used in rubber compound as reinforcing filler, improves the strength, durability, and wear resistance of the rubber compound. However, it causes filler-filler interaction and results in extensive hysteresis energy losses on deformation. This research aims to reduce hysteresis energy loss of rubber compound by reducing filler-filler interaction and by improving the filler dispersion in rubber matrix. In this study, the effect of carbon black treated with benzyl tri-ethyl ammonium chloride (BTEAC) on solution styrene butadiene rubber and butadiene rubber (SSBR-BR) system was studied. Microscopic study of dispersion and distribution of carbon black in rubber matrix was performed and a significant improvement in dispersion of BTEAC treated carbon black in SSBR-BR rubber matrix was observed. As a result of increased interaction of BTEAC treated carbon black with rubber, the filler - filler interaction was significantly reduced, resulting lower hysteresis energy loss of the compound as expressed by loss tangent (tanδ) value and it has been observed that an extent of around 15% reduction in tanδ value was achieved in rubber compound consisting of BTEAC treated carbon black. In this research, the carbon black was treated with different concentration of BTEAC, such as 0.5%, 1% and 1.5% and the best balance of rubber properties was observed for 1% and 1.5% BTEAC treated carbon black.
Subject
Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Acoustical, vibrational, and thermal investigations of pyrolytic carbon black reinforced natural rubber composites;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2024-02-06