A unified formalism for acoustic imaging based on microphone array measurements

Author:

Leclère Q1,Pereira A2,Bailly C2,Antoni J1,Picard C3

Affiliation:

1. University of Lyon, INSA-Lyon, Laboratoire Vibrations Acoustique, Villeurbanne, France

2. University of Lyon, Ecole Centrale de Lyon, LMFA UMR CNRS 5509, Ecully, France

3. MicrodB, Écully, France

Abstract

The problem of localizing and quantifying acoustic sources from a set of acoustic measurements has been addressed, in the last decades, by a huge number of scientists, from different communities (signal processing, mechanics, physics) and in various application fields (underwater, aero, or vibro acoustics). This led to the production of a substantial amount of literature on the subject, together with the development of many methods, specifically adapted and optimized for each configuration and application field, the variety and sophistication of proposed algorithms being sustained by the constant increase in computational and measurement capabilities. The counterpart of this prolific research is that it is quite tricky to get a clear global scheme of the state of the art. The aim of the present work is to make an attempt in this direction, by proposing a unified formalism for different well known imaging techniques, from identification methods (acoustic holography, equivalent sources, Bayesian focusing, Generalized inverse beamforming…) to beamforming deconvolution approaches (DAMAS, CLEAN). The hypothesis, advantages and pitfalls of each approach will be established from a theoretical point of view, with a particular effort in trying to separate differences in the problem definition (a priori information, main assumptions) and in the algorithms used to find the solution. Numerical simulations will be proposed for different source configurations (coherent/incoherent/extended/sparse distributions), and an experimental illustration on a supersonic jet will be finally discussed.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3