Fan tonal noise from aircraft aeroengines with short intake: A study at approach

Author:

Guérin S1,Holewa A1

Affiliation:

1. Dept. Engine Acoustics, DLR, Institute of Propulsion, Berlin, Germany

Abstract

This work assesses the risks of increased fan noise for high bypass ratio aeroengines with short intakes. The close proximity between the fan and inlet contributes to the increase in radiation of the rotor-alone tones and reinforces the interaction of the inflow distortion with the fan. Thus, the closer the fan is to the inlet, the higher the risk for noise generation. This article discusses the results of Harmonic Balance simulations performed on a conceptual turbofan operated at the approach condition. The inflow distortion created by the nacelle incidence is dominated by the circumferential component [Formula: see text] = 1. Its presence is visible throughout the nacelle. A thorough analysis of the unsteady pressure and velocity fields shows that the new acoustic source created by the periodic unsteady loading of the rotor cutting the inflow distortion is negligible compared to the rotor–stator interaction. But the amplitude of the rotor–stator interaction tones is affected by the unsteadiness of the rotor wake shape, particularly in the tip region where a pronounced flow separation on the rotor blade is created at a certain range of azimuthal position. The variations of the flow incidence at the rotor leading edge, due to the axial and tangential components of the mean velocity, cannot explain that flow separation. Instead, the origin is attributed to the azimuthal variations of the radial component of the mean flow velocity near the casing which slightly points inward to the spinner, i.e. in the opposite direction of the casing contour line. The flow separation induces a pronounced scattering of the wake azimuthal components mw =  hB into [Formula: see text] in the tip region, whereas the same effect is rather limited on the rest of the blade height. This leads to a moderate increase of the tonal sound power level compared to the case with clean inflow. The azimuthal scattering due to the propagation of the sound waves through the distortion is found to be weak in the bypass duct. However, this effect is very important in the inlet lip vicinity, where the strong asymmetry of the flow modifies the path of the sound waves up to the far field.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3